$C^{*}$-embedding and $C$-embedding on product spaces
نویسندگان
چکیده
منابع مشابه
Embedding normed linear spaces into $C(X)$
It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$. Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology, which is compact by the Banach--Alaoglu theorem. We prove that the compact Hausdorff space $X$ can ...
متن کاملembedding normed linear spaces into $c(x)$
it is well known that every (real or complex) normed linear space $l$ is isometrically embeddable into $c(x)$ for some compact hausdorff space $x$. here $x$ is the closed unit ball of $l^*$ (the set of all continuous scalar-valued linear mappings on $l$) endowed with the weak$^*$ topology, which is compact by the banach--alaoglu theorem. we prove that the compact hausdorff space $x$ can ...
متن کاملEmbedding Orlicz Sequence Spaces into C(α)
Let M be a non-degenerate Orlicz function such that there exist ǫ > 0 and 0 < s < 1 with ∑ ∞ i=1 M(ǫs)/M(s) < ∞. It is shown that the Orlicz sequence space hM is isomorphic to a subspace of C(ω). It is also shown that for any non-degenerate Orlicz function M , hM does not embed into C(α) for any α < ω .
متن کاملEmbedding measure spaces
For a given measure space $(X,{mathscr B},mu)$ we construct all measure spaces $(Y,{mathscr C},lambda)$ in which $(X,{mathscr B},mu)$ is embeddable. The construction is modeled on the ultrafilter construction of the Stone--v{C}ech compactification of a completely regular topological space. Under certain conditions the construction simplifies. Examples are given when this simplification o...
متن کامل$C^{*}$-semi-inner product spaces
In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tsukuba Journal of Mathematics
سال: 1997
ISSN: 0387-4982
DOI: 10.21099/tkbjm/1496163255